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ABSTRACT
-
« A new explicit bound is given for the ratio of the absolute error in an
approximate solution of a system of linear inequalities and equalities to the
absolute residual. This bound generalizes the concept of a norm of the
inverse of a nonsingular matrix. With this bound a condition number is
defined for a system of linear inequalities and equalities and for linear
programs. The condition number gives a bound on the ratio of the relative
error of an approximate solution to the relative residual. In the case of a

strongly stable system of linear inequalities and equalities the condition

number can be computed by means of a single linear program.’“(

AMS (MOS) Subject Classifications: 15A39, 90C05, 65F35
Key Words: Linear inequalities, condition number, linear programming

Work Unit Number S5 - Operations Research
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SIGNIFICANCE AND EXPLANATION

In solving a system of nonsingular linear equations the condition number
gives a useful bound on the ratio of the relative error of an approximate
solution to the relative residual. We extend this bound to the important
cases of linear equations and inegualities and of linear programs which one

commonly encounters in operations research.
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A CONDITION NUMBER FOR LINEAR INEQUALITIES
AND LINEAR PROGRAMS

O« L. MANGASARIAN

1. Introduction
A well known result of linear algebra [1, 8] states that for the system
of linear equation
Ex = g (1)
where E is a given n xn real nonsinqular matrix and g is a given nonzero
vector in the n-dimensional real Ruclidean space R", the following bound for
the ratio of the relative error of an approximate solution to the relative

residual holds for any fixed norm:

LS 1 R R T .- il L (2)
=1 Ig!

Here x is the exact solution, that is Ex = g, whereas x 1is an
approximate solution with residual Ex - g. The quantity IE-1I iEL, which

depends on the norm employed, is called the condition number of the matrix

E. The condition number is a useful numerical constant which measures how
badly the relative error could behave in terms of the relative residual. The
purpose of this work is to define a similar quantity for the system of linear
inequalities and equalities

Ax<b , Cx=4 (3)
where A and C are given m xn and k xn real matrices respectively,
b is a given vector in the m-dimensional real Euclidean space R® and 4 is

a given vector in Rk.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS=7901066.
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Our results depend on a theorem due to Hoffman [4] which gives a bound on
the ratio of the absolute error in an approximate solution of a system of
linear inequalities to the absolute value of the residual. We shall give here
a new explicit expression for this bound by using a particularly simple proof
that makes use of duality theory of linear programming {3]. The bound in
Hoffman's theorem is a generalization of the idea of a norm of the inverse of
a nonsingular matrix (Remark 2). For monotonic norms the product of this
bound with the norm of the matrices involved generates what we have termed a

condition number for matrices associated with a system of inequalities and

equalities (Theorem 2 and Definition 1). For the case of a system of
inequalities which satisfy a strong regularity condition we show how the
condition number can be obtained by solving a single linear program (Theorem
3). In Section 3 we extend the concept of a condition number to a pair of
dual linear programs.

We briefly describe now the notation and some of the basic concepts used
in this work. For a vector x in the n-dimensional real Euclidean space rR®,
Ix] and x, will denote the vectors in R® with components lei = Ixil

and (x+)i = max{xi,O}, i=1,2,...,n, respectively. For a norm leB on

Rn, ixi , will denote the dual norm [S, 10] on Rn, that is
8
Ixt = max xTy, where the superscript T denotes the transpose. The
8 Iyl =1

B

generalized Cauchy-Schwarz inequality leyI < IxIB iyl ., for x and y in

B8
R, follows immediately from this definition of the dual norm. For 1 < p

1

n —
= 1 the p-norm ( J |xi|p)p and the g-norm are dual norms
i=1
in ®" [(81. 1f I-HB is a norm on RP, we shall, with a slight abuse of

notation, let l-lB also denote the corresponding norm on ™ for m ¥n.

For an m xn real matrix A, Ai denotes the ith row and A.j denotes the

Q-
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jth column, while 1A} denotes the matrix norm [11] subordinate to the

B
vector norm lei 8’ that is IAIB- max IAxl8 « The consistency condition
Ixil =1
B
Mxl1 8 < IAIB le8 follows immediately from this definition of a matrix

norm. A vector of ones in any real Euclidean space will be denoted by e.
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2. Condition Number for a System of Inequalities and Equalities

We begin by stating and proving a form of Hoffman's theorem (4] which is
suitable for our purposes and which includes an explicit expression, not given
before, for the value of the bound on the ratio of the error in an approximate
solution to the residual. Robinson [9] has given a different but more
complicated expression for this bound.

Theorem 1. Let A, b, C and 4 be as defined in (3), let I-IB be a norm
on K and 1let

S={x| Ax<Db, Cx=4} (4)
be nonempty. Then for each x in R® not in S there exists a point p(x)

in S such that

ix - p(x) s uB"'(A'C) . I(Ax—b)+. (Cx=-4) l8 (S)
where
r (u,v,w,y,) 1is a vertex of: )
< u—v-ATw - CTy+cTe; = 0
u, (A,C):= maximum W, y-ecl , >
B w,v,w,¥, % ] eTu + eTv = 1 (6)
\ (u,v,w,y,2) 2 0 )
Remark 1.

The subscripts 8 and « of ¢ refer to the f~norm and e-norm used
in (5). We shall give below in (9) a relation using other norms. The
condition in (6) that (u,v,w,y,7) be a vertex is essential, for otherwise
the maximum of (6) may not exist. We shall give below (Corollary 2 and
Theorem 3) cases where the vertex requirement need not be imposed.

Proof of Theorem 1. Let x be any point in R® not in S. Because the set

S is nonempty there exists a point p(x) in S which is closest to x in

the o-norm. For such a point, (p(x), Ip(x)-xlw) constitute a solution of

e e . 4
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L
;
. the linear program
"4
j min{§ | -e§ ¢ p-x < 5, Ap { b, Cp = 4} . (7)
[- 7K
> The dual of (7) is
max {ir(u-v)-ﬁrw—d?(y-ec)Iu-v-h?w—cTy+cTe; = 0, eT(u+v) = 1, (8)
U,V,W,¥, (u,v,v,¥,0) ?_ 0}

with a vertex solution (u{x), v(x), w(x), y(x), r{(x)) which satisfies
T T T
0 < 8(x):= Up(x) - xI_ = x (u(x) - v(x)) = bwix) - & (y(x) - eg(x))

= w(x)T (Ax=b) + (y(x) - er(x))T(Cx~a)

S w0 T (Ax=b) | + (y(x) - eg(x))” (Cx-a)

I (Since (Ax-b)+ > Ax~b)

S Mi(x), (y(x) ~ eg(x))1 , + HAX-D) , (t.':x-d)l8
B

(By the generalized Cauchy-Schwarz inequality)

' S Mg AL UAX-D) |, (Cx-a) N,

Remark 2. For the case when Ax < b is absent from (3) and (4), C is a

nonsingular n xn matrix and 8 = =, definition (6) degenerates to

u_(9C) = I Vi,




Proof of Remark 2. ' 1

g (u,v,¥,3) is a vertex ofsw
; r !
~ l.lu( ¢:C) = maximum ly-ecl1 y-er = (C) (u=-v)
| ‘l u,v,y,c >
' elu + ety = 1 ’ 4
(u,v,¥,2) 20 ]

X j y-er = (cT) (u=-v)

. = maximum ty-ezl $

‘ ! u,v,¥: % 1 CT\I + GTV = 1

& (u,v,¥,2) 2 0 f

r’."v / 3;

(Because the convex function Iy-ecl1 attains

its maximum at a vertex [10, Corollary 32.3.4])

-1 eTu + eTv = 1 .

= maximum ie™  (uvi
a,v (u,v) 20

-1
= maxtman kb (<M ) )
1<isn

(Since I(cT) 1(u—v)l is convex and attains its
maximum at one of the vertices of the simplex

{(u,v)IeTu + eTv =1, (u,v) 2 0}. These are the
vertices of the unit cube {(u,v)|0 < (u,v) € e}

lying along the coordinate axes and excluding

the origin.)

= Ic ¥

Theorem 1 can be eagily stated for norms other than the «-norm as

follows.
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Corollary 1. Let the assumptions of Theorem 1 hold. Then for each x not in
S there exists p(x) in S such that

Ix = p(x) L < ug (A,C) + KAx-b) , (Cx-d)1g (9)

where

JACY = a g ug (R,C) (10)

Y8 v Vg
and qu is the positive number relating the y-norm and eo-pnorm by

1IzZLb < a1zl for all z in R%.
Y= yo

Before deriving the condition~number result for the system (3) we need a
couple of gimple lemmas. We recall (5, 8] that a monotonic norm on R® is

any norm kel on R® such that for a, b in RP, jlal 5 Ib! whenever
1

n hl

la) < jb]. The g~norm, Ialq = ( 2 |ai|q)q for q > 1 is a monotonic norm
i=1

(sl.

Lemma 1. Let a and b be real numbers. Then a { b implies (a), < |bl.
Proof. Let a < be. Then

Il - (a), = 2(b)_ -D -(a), = ((B) =~ b) + ((b) - (a),) 20 .

0
Lemma 2. Let -l be a monotonic norm on R*K, 1let a, b be in R® and
let ¢, 4 be in R*. Then a b and c =d imply that
'(a)+l CIB § lb:d.sc
Proof. Let a (b and c = d. By Lemma 1 we have that (a)+ < |bl, and we
algo have that |c| = |d]. Hence by the monotonicity of I-I8 we have that
l(a)+, cl8 i Ib,dlB.
]

Lemma 3. Let A, b, C and d be as defined in (3) and let I-IB be a
monotonic norm on R"+k. Then l(-b)+, dlB £ Iax, Cxls for any x in S.

Proof. Just apply Lemma 2 to =~b < -Ax and 4 = Cx.




: We are now ready to establish our condition-number result for the system

-4 (3).

Theorem 2. Let A, b, C, d and S be as defined in (3) and (4), let I-I8

be a monotonic norm on Rm*k and let ((-b),, d) # 0. Then there exists a

number uBB(A,c) defined by (10) and (6) such that for each x in R® not

in S there exists a p(x) in S such that

Ix - p(x)1 A I(Ax-b)+, (Cx-d)l8 1
£ ¢
4 £ B (A,C) - . (1)
“; lp(X)lB g8 c 8 L1¢ b’+o dlB
1
i i Proof. Let x be any point in R® not in S. By Corollary 1 there exists a

- point p(x) in S satisfying (9). Obviously p(x) # 0, because

((-b),, 4) ¥ 0, and

N Ix - p(x) 1| I(-b) ., a1 I(Ax-b)*, (Cx=a) 1

g B
$ ua,.(3,0) - !
. lp(x)l8 88 lp(x)ls LL¢ b)+, dIB . ;
Ap(x), Cp(x)1, I(Ax-b),, (Cx-d)I i
! < My (A,C) K 8 “_b; T B 5
J (By Lemma 3)
* ] ]
¥ $ v |l g I(A:::L;: (Z’: L
1) B8 +’ B
: |
¢ It is evident from (11) that the following is an appropriate definition
_; . for a condition number of (A,C) relative to the inequalities and equalities
) (3).
b

.} Definition 1. Let A, b, C and 4@ be as defined in (3), and let n-lB be a

monotonic norm on Rp*k. The condition number vB(A,C) of the matrices

(A,C) relative to the system of inequalities and equalities of (3) is defined g

by

P




A

c (12)

\’B( A,C):= uBS(A'C)

B

where (A,C) 1is defined by (10) and (6).

Yag

In view of Remark 2 we have that v _(4,C) = IC-'1

| IR (o when C |is
o o

nonsingular and A 1is not present.
We note that the computation of the condition number vB(A,C) of (12)

depends on computing Q(A,C) of (6) which is a problem of maximizing of a

Vg
convex function on the vertices of a polyhedral set. This is a difficult
problem because it may have many local maxima. This problem however can be
reduced to a maximization problem on the entire polyhedral set rather than on
its vertices, if the objective function is bounded above on the entire
polyhedral set. In particular we have the following;

Corollary 2. Let A and C be m xn and k xn real matrices
respectively and let #e{_ 2 be a norm on R‘“k- if

]
{x]Ax < 0, Cx = 0} # ¢ and the rows of C are linearly independent (13)

then the constant u 8m(l\,c) of (6) is also given by
u-v-ATw - CTz = 0
qu(A,c) = maximum wozi " " (14)
u,v,w,z B eu+tev=1

(u,v,w) 2 0

Proof. Note that problem (14) is obtained from (6) by dropping the vertex
condition from (6) and defining z = y-ef., We firat show that the feasible
region of (14) is bounded under assumption (13). Suppose not, then there

i i

exists a sequence {(ui,vi,wi,zi)} with {m ,z 1} » » for some norm,

{(ul,vi)} remaining bounded and

IESENI, JESE R o
oy pan

w ,z | w ,z |

i

j|
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Hence by the Bolzano-Weierstrass theorem there exists (;;;) such that
Aw+Cz=0, w20, (w,2) #0 (15)
which contradicts the linear independence of the rows of C {if w=0 and
contradicts the nonemptiness of {xJAx < 0, Cx = 0} if w ¥ 0 because then
0> xFAT; + xTcT; = 0. Hence the feasible region of (14) is compact and the
continuous objective function Iw,zl , attains a maximum on it. B8ince
problem (14) is equivalent to proble: (6) without the vertex requirement, then
problem (6) without the vertex condition must have a solution. Since the
objective function of (6) is concave and the feasible region is a polytope not
containing straight lines going to infinity in both directions, problem (6)
without the vertex condition must have a vertex solution [10, Corollary

32.3.4]. Hence under assumption (13) the vertex condition can be dropped from

(6) which results in (14).

Remark 3. It can be shown [7] that condition (13) is equivalent to the strong

regularity or strong stability condition that

Ax < b, Cx = & has solution x for each (b,d e RP+k . (16)

For the case when there are no equalities present in (3), B = » and
B. = 1, problem (14) becomes a simple linear program and the condition
number of the matrix A with respect to the inequalities Ax ¢ b can be
determined by solving a single linear program. In particular we have the
following.
Theorem 3. Let A be an m xn real matrix, let b be a vector in RF,
let 8 = {x|Ax < b} and let {x|Ax < 0} # g. Then for each x in R" not
in 8 there exists a point p(x) in 8 such that
Ix = p(x)0_ < u_ (A) Hax - b) 1, (17)

where
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u-v-ATw = 0, oTu + eTv = 1],

J_ U (A) = max ew (18)
; u,v,w u,v,v > 0 .
AR Purthermore if (=b), ¥ 0
; x - p(x) ), Hax - b) 1
T < u () nln-—--—---"_b)““ . (19)

PO S

The number y m(A) Y is termed as the condition number of the matrix A

relative to the inequalities Ax < b.
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RSP FOIRIY VI

D R i B0 o



- 3. Condition Number of a Linear Program

'J We now apply the results of the previous section to obtain some

corresponding results for a linear programming problem. Consider the linear

program
2 Hinimize{érz | H2 > h, = > 0} (20)
; n,
Z€R
i nq n2
] when g and h are given vectors in R and R respectively and H |is

j a given n, xn, real matrix. Associated with the above linear program and
l
{
i

its dual are the following necessary and sufficient optimality conditions

{3, 2]
= “Mx - q <0, -x ¢0, gx &0 (21a)
J where
B!
- o -HT g 2
M= ¢ 9= ¢ X = . (21b)
H 0 -h

4!

R S

We have the following counterparts for the theorems of Section 2.

-

Theorem 4. Consider the linear program (20) and its associated optimality

conditions (21). Let

Lo RTINS

S = {x|]-Mx < q, -x £ 0, qTx=<.0})‘ﬂ (22)

et

and let IolB be a norm on R® where m = 2(m1 + n,) + 1. Then for each

x not in S there exists a point p(x) in S such that

. puohegt s - C o, -

-M
Ix - p(x)l“ £ "B~ -1 s H{-Mx ~ q, -x, qTx)+IB (23)
T
q

where

oz -

-12-
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is a)

? (24)

(u,v,w1,w2,w3)
- verte: ofs
"B~ -1 = maximum Iw1.w2,w3l . u-v '1”2-‘1"3 =0
u,v,w, W, W B
ot 117273 eTureTy = 1
(uivc"1 1721'3) z 0 )
If the «-norm is replaced by the <vy-norm in the above, then

-M
"Bw -1 must be replaced by
T
q
-M -M
Y8y yetgee
T T
q q

is the positive number relating the

where a
YQ
n1+m1.

(25)

y-norms and the eo=-norms

1zl < a 1zl for all z in R
‘Y - YQ [ ]
Theorem 5. (Condition number of a linear program) Let the assumptions of
Theorem 4 hold, let l-lB be a monotonic norm on R and let
-M
q # 0. Then there exists a number y, | -I defined by (25) and (24)
T

q

such that for each x not in 8 there exists a p(x)

1Ix - p(x)1 B B ”(-Mx-q,-x,qTx)+||g
<y -1 -1
tp(x) 1 = A8 M=-q) 1
8 T T +8
q q 8

-13-

in 8 such that

(26)
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!
{
S
!
=
'J The number
|
-M -M
~y
; vs ~I 1= uBB -I
: T T
q q

is defined as the condition number of the linear program (20).

rad -

We note that because Mx + g 20, x 2 0 imply that qTx 2 0, it follows

that there exists no x satisfying Mx > 0, x > 0 and qTx < 0 and hence

the problem (24) cannot be reduced to a linear program as was done in Theorem

3.
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